Calculation of Base Rate Constants from Acid Rate Constants

By Samuel H. Maron ${ }^{1}$ and Victor K. La Mer

For the protolytic equilibrium

$$
\begin{equation*}
\mathrm{N}+\mathrm{B} \underset{k_{\mathrm{A}}}{\stackrel{k_{\mathrm{B}}}{\rightleftarrows}} \mathrm{R}^{-}+\mathrm{A} \tag{1}
\end{equation*}
$$

where N is acid substrate which ionizes to yield a proton to a base, B is base (proton acceptor), R^{-}is conjugate base of N , and A is conjugate acid of B , the equilibrium constant, K, is given by

$$
\begin{equation*}
K=\frac{k_{\mathrm{B}}}{k_{\mathrm{A}}}=\frac{\left[\mathrm{R}^{-}\right][\mathrm{A}]}{[\mathrm{N}][\mathrm{B}]} \tag{2}
\end{equation*}
$$

However, the ionization constant of N, K_{N}, corresponding to the reaction

$$
\begin{equation*}
\mathrm{N}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{R}^{-} \tag{3}
\end{equation*}
$$

is given by

$$
\begin{equation*}
K_{\mathrm{N}}=\left[\mathrm{R}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{N}] \tag{4}
\end{equation*}
$$

while the ionization constant of $\mathrm{A}, K_{\mathrm{A}}$, corresponding to the reaction

$$
\begin{equation*}
\mathrm{A}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{B} \tag{5}
\end{equation*}
$$

is given by

$$
\begin{equation*}
K_{\mathrm{A}}=[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{A}] \tag{6}
\end{equation*}
$$

Dividing now (4) by (6)
$\frac{\kappa_{\mathrm{N}}}{\kappa_{\mathrm{A}}}=\frac{\left[\mathrm{R}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{N}]} \frac{[\mathrm{A}]}{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{\left[\mathrm{R}^{-}\right][\mathrm{A}]}{[\mathrm{N}][\mathrm{B}]}=K$
by eq. (2). And hence

$$
\begin{equation*}
\frac{K_{\mathrm{N}}}{K_{\mathrm{A}}}=\frac{k_{\mathrm{B}}}{k_{\mathrm{A}}} \tag{8}
\end{equation*}
$$

Knowing any three of the four constants K_{N}, $K_{\mathrm{A}}, k_{\mathrm{B}}, k_{\mathrm{A}}$ in (8), the fourth may be calculated. It is proposed to apply these equations to the prototropic isomerization of nitroparaffins t_{0} calculate k_{B} from available values of $K_{\mathrm{N}}, K_{\mathrm{A}}$, and k_{A}.

The primary and secondary nitroparaffins are acids which react with bases (defined in the general sense of Brönsted ${ }^{2}$) to yield an aci-nitroparaffin ion and a conjugate acid ${ }^{3}$ according to the general scheme

$$
\begin{equation*}
\stackrel{\mathrm{R}^{\prime}}{\mathrm{R}^{\prime}}>\mathrm{CHNO}_{2}+\mathrm{B} \xrightarrow{k_{\mathrm{B}}} \underset{\mathrm{R}^{\prime}}{\mathrm{R}}>\mathrm{C}=\mathrm{NOO}^{-}+\mathrm{A} \tag{9}
\end{equation*}
$$

[^0]The mechanism of this reaction has been discussed before. ${ }^{4}$ Again, the reisomerization of aci-nitroparaffin to the nitro form has been shown to be, under the proper conditions, a reaction between the aci-nitroparaffin ion and an acid ${ }^{5}$ (in the general sense) according to the scheme

$$
\begin{equation*}
\stackrel{\mathrm{R}^{\prime}}{\mathrm{R}} \mathrm{C}=\mathrm{NOO}^{-}+\mathrm{A} \xrightarrow{k_{\mathrm{A}}} \stackrel{\mathrm{R}^{\prime}}{\mathrm{R}^{\prime}}>\mathrm{CHNO}_{2}+\mathrm{B} \tag{10}
\end{equation*}
$$

If (9) and (10) be combined, we have the equilibrium condition:

with equilibrium constant

$$
K=\frac{\left[\begin{array}{c}
\mathrm{R} \tag{12}\\
\mathrm{R}^{\prime}
\end{array} \mathrm{C}=\mathrm{NOO}^{-}\right][\mathrm{A}]}{\left[\begin{array}{c}
\mathrm{R}^{\prime} \\
\mathrm{R}^{\prime}
\end{array} \mathrm{CHNO}_{2}\right][\mathrm{B}]}=\frac{k_{\mathrm{B}}}{k_{\mathrm{A}}}
$$

Equation (12) is exactly analogous to equation (2), and hence it follows from (8) that

$$
\begin{equation*}
K=\frac{k_{\mathrm{B}}}{k_{\mathrm{A}}}=\frac{K_{\mathrm{N}}}{K_{\mathrm{A}}} \tag{13}
\end{equation*}
$$

where K_{N} is according to (3) and (4) the constant for the nitroparaffin dissociation

$$
\xrightarrow[\mathrm{R}^{\prime}]{\mathrm{R}_{\backslash} \mathrm{CHNO}_{2}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{R}}{\longrightarrow}>\mathrm{C}=\mathrm{NOO}+\mathrm{H}_{3} \mathrm{O}^{+}}
$$

and

$$
K_{\mathrm{N}}=\frac{\left[\left.\begin{array}{c}
\mathrm{R} \tag{1.5}\\
\mathrm{R}^{\prime \prime} \\
\left.\mathrm{C}=\mathrm{NOO}^{-}\right]
\end{array} \mathrm{H}_{3} \mathrm{O}^{+} \right\rvert\,\right.}{\left[\begin{array}{c}
\mathrm{R}^{\prime} \\
\mathrm{R}^{\prime}
\end{array} \mathrm{CHNO}_{2}\right]}
$$

while K_{A} is the ionization constant of the acid used and is defined by equations (5) and (6).

The ionization constants K_{N} of the nitro forms of nitromethane and nitroethane can be obtained from some measurements of Junell. ${ }^{6}$ Junell determined what he terms the "scheinbare Dissoziationskonstante" of these two substances by
(4) Maron and La Mer, This Journal, 60, 2588 (1938).
(5) Junel1, (a) Arkiy Kemi, 11B, No. 30 (1934); (b) Svensk Kem. Tid., 46, 125-136 (1934); (c) Dissertation, Uppsala, 1935; (d) Maron and La Mer, This Journal, 61, 692 (1939).
(6) Junell, ${ }^{3}$ Dissertation, DP. 114-124.
determining at high pH 's the total concentration of aci form and calculating the ratio

$$
\begin{equation*}
K^{\prime}{ }_{\mathrm{N}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\text {aci form }] /[\text { nitro form }] \tag{16}
\end{equation*}
$$

The highest $\mathrm{H}_{3} \mathrm{O}^{+}$concentration used for the nitromethane measurements was 1.41×10^{-9}, while the highest concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$for nitroethane was 5.38×10^{-9}. Now, since the ionization constant of aci-nitromethane is given by Junell ${ }^{7}$ as 6×10^{-4} while that of nitroethane has been shown to be $4.1 \times 10^{-5,8}$ it follows that the ratios of aci ion to aci acid at equilibrium must be

$$
\frac{\left[\mathrm{R}^{-}\right]}{[\mathrm{R} \mathrm{H}]}=\frac{6 \times 10^{-4}}{1.41 \times 10^{-9}}=4.3 \times 10^{5} \text { for nitromethane }
$$

and

$$
\frac{\left[\mathrm{R}^{-}\right]}{[\mathrm{R} \mathrm{H}]}=\frac{4.1 \times 10^{-5}}{5.38 \times 10^{-9}}=7.6 \times 10^{3} \text { for nitroethane }
$$

From these ratios it is seen that compared to the concentrations of aci ion present the concentrations of aci acid are negligible, and hence (16) is essentially

$$
\begin{equation*}
K_{\mathrm{N}}^{\prime}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{R}^{-}\right]}{[\mathrm{N}]}=K_{\mathrm{N}} \tag{17}
\end{equation*}
$$

the ionization constants of the nitro forms. For nitromethane Junell reports from five measurements $K_{\mathrm{N}}=(2.6 \pm 0.2) \times 10^{-11}$, while for nitroetnane he gives as a result of four measurements $K_{N}=(2.7 \pm 0.2) \times 10^{-9}$. These are the values of K_{N} employed in all calculations.

Table I gives the observed quantities and calculations for nitromethane at 0°. Columns (1), (2) and (3) give the acids used, their ionization constants, and the rate constants, respectively, for the reaction (10)

$$
\mathrm{CH}_{2}=\mathrm{NOO}^{-}+\mathrm{A} \longrightarrow \mathrm{CH}_{3} \mathrm{NO}_{2}+\mathrm{B}
$$

These data are due to Junell. ${ }^{7}$ Column (4) gives the equilibrium constant K calculated by Eq. (13), while column ($\overline{0}$) gives the rate constant, k_{B}, calculated by (12) for the reaction: $\mathrm{CH}_{3} \mathrm{NO}_{2}+$ $\mathrm{B} \rightarrow \mathrm{CH}_{2}=\mathrm{NO}_{2}{ }^{-}+\mathrm{A}$ where B is the conjugate base of the particular acid.

It is possible to compare several of the calculated values of k_{B} with observed results. Although no rate data are available for 0°, kinetic measurements are extant for the reaction with the bases $\mathrm{H}_{2} \mathrm{O}$, monochloroacetate, and acetate ions at several temperatures, so that extrapolation to 0° and comparison with the calculated constants are possible. The data available for this purpose are summarized in Table II. A

[^1]

Table II
Rate Constants for the Reaction

$\mathrm{CH}_{8} \mathrm{NO}_{2}+\mathrm{B} \xrightarrow{k_{\mathrm{B}}} \mathrm{CH}_{2}=\mathrm{NOO}^{-}+\mathrm{A}$		
Temp.	k_{B}	Reference
$\mathrm{H}_{2} \mathrm{O}$		
49.91	8.8×10^{-7}	Junell ${ }^{3}$
59.93	2.5×10^{-8}	Junell ${ }^{3}$
69.85	6.8×10^{-6}	Junell ${ }^{\text {a }}$
69.85	7.4×10^{-6}	Reitz ${ }^{3}$
$\mathrm{CH}_{2} \mathrm{ClCOO}^{-}$		
11.2	5.1×10^{-5}	Reitz ${ }^{3}$
20.0	1.50×10^{-4}	Pedersen ${ }^{3}$
25.0	2.35×10^{-4}	Reitz ${ }^{\text {3 }}$
35.0	7.71×10^{-4}	Reitz ${ }^{3}$
$\mathrm{CH}_{2} \mathrm{COO}^{-}$		
11.0	8.7×10^{-4}	Reitz ${ }^{3}$
20.0	2.69×10^{-3}	Pedersen
22.0	3.22×10^{-3}	Pedersen ${ }^{3}$
25.0	4.55×10^{-3}	Reitz ${ }^{3}$
35.0	1.38×10^{-2}	Reitz ${ }^{3}$

plot of $\log k_{\mathrm{B}} v s .1 / T$ and extrapolation to 0° yields the constants given in column (6) of Table I. The agreement between calculated and observed results, columns (5) and (6), is good.

In case of the acid $\mathrm{H}_{3} \mathrm{O}^{+}$the procedure was reversed and k_{A} calculated from the values of k_{B} at 0° measured by Maron and La Mer. ${ }^{4}$

Fig. 1.-Plot of $\log k_{\mathrm{B}} / q$ and $\log k_{\mathrm{A}} / p v s . \log \left(q / p K_{\mathrm{A}}\right)$ for nitromethane at 0°. expected.
in column (4), and calculated from $K_{\text {calcd. }}=$ $K_{\mathrm{N}} / K_{\mathrm{A}}$. The agreement again is good. And, finally, also by equation (13), $K_{\mathrm{A}}=K_{\mathrm{N}} k_{\mathrm{A}} / k_{\mathrm{B}}$; values of K_{A} thus calculated are given in column (8), and again show as good agreement with the observed values of K_{A} in column (2) as can be

Table III gives the results of similar calculations for nitroethane. These calculations are again based on Junell's values for k_{A}, and on his value of $K_{\mathrm{N}}=2.7 \times 10^{-9}$ for nitroethane. Columns (1), (2) and (3) have the same significance as before except that now the reaction involved is

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NO}_{2}+\mathrm{B} \underset{k_{\mathrm{A}}}{\stackrel{k_{\mathrm{B}}}{\rightleftarrows}} \mathrm{CH}_{3} \mathrm{CH} \Rightarrow \mathrm{NOO}^{-}+\mathrm{A}
$$

while columns (4) and (5) give the calculated equilibrium constants of the reaction ($K_{\text {calco. }}$) and the rate constants for the forward reaction $\left(k_{\mathrm{B}}\right)$. Unfortunately no extended data on the forward reaction are available to permit comparison of calculated and observed results in this case. The only value of k_{B} available at 0° is $k_{\mathrm{OH}^{-}}=$ 39.1 and due to Maron and La Mer, ${ }^{4}$ but no k_{A} observed is known to permit a calculation of k_{B}. Hence again the procedure was reversed and the known value of $k_{\mathrm{OH}^{-}}$was used to calculate the value of $k_{\mathrm{H}_{2} \mathrm{O}}$ in column (3).

However, a test of the calculated values of k_{B} can be obtained in another way. Junell showed that for both nitromethane and nitroethane a plot of $\log k_{\mathrm{A}} / p$ vs. $\log \left(q K_{\mathrm{A}} / p\right)$ is essentially linear, as would be expected if the Brönsted relation \log $k_{\mathrm{A}} / p=\log G_{\mathrm{A}}+\alpha \log \left(q / p K_{\mathrm{A}}\right)$ were obeyed. p and q are the statistical factors to correct the respective measured acid and base constants K_{A} and K_{B} to a uniform basis (see ref. 1). The values assigned p and q are given in Tables I and III. On theoretical grounds it may be anticipated that a plot of $\log k_{\mathrm{B}} / q v s . \log q / p K_{\mathrm{A}}$ should

It is possible to make the comparison between observed and calculated constants in two other ways, namely, by calculation of K and K_{A} from observed data. From equation (13), $K=k_{B} /$ k_{A}. Using the observed values of k_{A} and k_{B} given in columns (3) and (6) of Table I, $K_{\text {obsd. }}$. have been calculated and are given in column (7). These values are to be compared with those given
also yield a straight line but with slope $=-\beta$ and y intercept $=\log G_{\mathrm{B}}$. Further $\alpha+\beta$ should equal unity. The plot of both $\log k_{A} / p$ and \log k_{B} / q vs. $\log q / p K_{\mathrm{A}}$ for nitromethane at 0° is shown in Fig. 1. The expected linearity for \log k_{B} / q vs. $\log q / p K_{\mathrm{A}}$ is verified. Whenever a point is off the curve, the discrepancy is traceable to the corresponding value of k_{A}, which is also off
the curve. Further, from this plot we obtain nitromethane $G_{\mathrm{B}} / G_{\mathrm{A}}=1.98 \times 10^{-7} / 0.82 \times$ $G_{\mathrm{A}}=8200, G_{\mathrm{B}}=1.98 \times 10^{-7}, \alpha=0.39$ and $10^{4}=2.4 \times 10^{-11}$, as against the observed value $\beta=0.62$, and hence $\alpha+\beta=$ $0.39+0.62=1.01$ as against the expected sum of unity.
A similar plot for nitroethane is shown in Fig. 2. Again the linear relation is obtained between log k_{B} / q and $\log q / p K_{\mathrm{A}}$. In this case $G_{\mathrm{A}}=32, G_{\mathrm{B}}=1.05 \times 10^{-7}$, $\alpha=0.36, \beta=0.65$ and $\alpha+\beta=$ $0.36+0.65=1.01$.
From the deductions of this paper may be derived another very interesting and quite general relationship. For reactions of the type discussed here, and which
lead to an equilibrium, we have in general

$$
k_{\mathrm{A}} / p=G_{\mathrm{A}}\left(q / p K_{\mathrm{A}}\right)^{\alpha} \text { and } k_{\mathrm{B}} / q=G_{\mathrm{B}}\left(p / q K_{\mathrm{B}}\right)^{\boldsymbol{s}}
$$

where $K_{\mathrm{B}}=1 / K_{\mathrm{A}}, i . e .$, the ionization constant for the base conjugate to A. With these equations we obtain finally for $\log k_{\mathrm{B}} / k_{\mathrm{A}}$
$\log k_{\mathrm{B}} / k_{\mathrm{A}}=[1-(\alpha+\beta)] \log q / p+$

$$
\begin{equation*}
\log \frac{G_{\mathrm{B}}}{G_{\mathrm{A}}}-(\alpha+\beta) \log K_{\mathrm{A}} \tag{18}
\end{equation*}
$$

But $k_{\mathrm{B}} / k_{\mathrm{A}}=K$ and $(\alpha+\beta)=1$. Hence

$$
\begin{equation*}
\log \frac{k_{\mathrm{B}}}{k_{\mathrm{A}}}=\log K=\log \frac{G_{\mathrm{B}}}{G_{\mathrm{A}}}-\log K_{\mathrm{A}} \tag{19}
\end{equation*}
$$

However, according to (8) $\log K+\log K_{\mathrm{A}}=$ $\log K_{\mathrm{N}}$. Therefore

$$
\log K_{\mathrm{N}}=\log G_{\mathrm{B}} / G_{\mathrm{A}}
$$

and

$$
\begin{equation*}
K_{\mathrm{N}}=G_{\mathrm{B}} / G_{\mathrm{A}} \tag{20}
\end{equation*}
$$

According to (20) the ratio $G_{\mathrm{B}} / G_{\mathrm{A}}$ should be the ionization constant of the substrate involved in the basic reaction. This relation can be tested easily by utilizing the values of G_{B} and G_{A} found at 0° for nitromethane and nitroethane. For
of $K_{\mathrm{N}}=2.6 \times 10^{-11}$. Similarly, for nitroethane $G_{\mathrm{B}} / G_{\mathrm{A}}=1.05 \times 10^{-7} / 32=3.3 \times 10^{-9}$ as against the experimental value $K_{\mathrm{N}}=2.7 \times 10^{-9}$. Considering the uncertainties in drawing the straight lines in Figs. 1 and 2 the agreement is satisfactory.

Summary

1. Equations are deduced for calculating rate constants from certain kinetic and thermodynamic data.
2. These equations are applied to calculate the base rate constants for the isomerization of nitromethane and nitroethane to the aci forms.
3. Wherever comparison between calculated and observed values is possible, the agreement is good.
4. The calculated constants obey the Brönsted relation $\left(\log k_{\mathrm{B}} / q=G_{\mathrm{B}}\left(p / q K_{\mathrm{B}}\right)^{\beta}\right.$.
5. An equation is derived relating acid strength of the substrate to the constants G_{A} and G_{B} in the Brönsted equations. The equation is shown to be valid for the cases discussed.
NEW York, N. Y.
Received May 1, 1939

[^0]: (1) Present address: Department of Chemical Engineering, Case School of Applied Science, Cleveland, Ohio.
 (2) Brönsted, Chem. Rev., 5, 231 (1928).
 (3) Pedersen, Det. Kgl. Videnskab. Selskab. Math.-fys. Medd., 12, 1 (1932) (in English); Junell, Z. physik. Chem., 141A, 71-90 (1929); Dissertation, University of Uppsala, Sweden, 1935; Arkiv Kemi 11B, No. 27 (1934); ibid., 118, No. 34 (1934); Reitz, Z. physik. Chem., 176A, 363-387 (1936).

[^1]: (7) Junell, Dissertation, ref. 3.
 (8) Maron and Shedlovsky, This Journal, 61, 753 (1939)

